
A Reference Architecture for Web Browsers

Alan Grosskurth and Michael W. Godfrey
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1 Canada

{agrossku,migod }@uwaterloo.ca

Abstract

A reference architecture for a domain captures the fun-
damental subsystems common to systems of that domain as
well as the relationships between these subsystems. Hav-
ing a reference architecture available can aid both during
maintenance and at design time: it can improve under-
standing of a given system, it can aid in analyzing trade-
offs between different design options, and it can serve as
a template for designing new systems and re-engineering
existing ones. In this paper, we examine the history of the
web browser domain and identify several underlying phe-
nomena that have contributed to its evolution. We develop
a reference architecture for web browsers based on two
well known open source implementations, and we validate
it against two additional implementations. Finally, we dis-
cuss our observations about this domain and its evolution-
ary history; in particular, we note that the significant reuse
of open source components among different browsers and
the emergence of extensive web standards have caused the
browsers to exhibit “convergent evolution.”

Keywords: Software architecture, reference architecture,
software evolution, component reuse, web browser.

1 Introduction

A reference architecture[4] for a domain captures the
fundamental subsystems and relationships that are common
to the existing systems in that domain. It aids in the under-
standing of these systems, some of which may not have their
own specific architectural documentation. It also serves as a
template for designing new systems by identifying areas in
which reuse can occur, both at the design level and the im-
plementation level. While reference architectures exist for
many mature software domains such as compilers and oper-
ating systems, no reference architecture has been proposed
yet for web browsers.

The web browser is perhaps the most widely used soft-
ware application in history and has evolved significantly
over the past fifteen years; today, users run web browsers
on diverse types of hardware, from cell phones and tablet
PCs to regular desktop computers. A reference architec-
ture for web browsers can help implementors to understand
trade-offs when designing new systems, and can also assist
maintainers in understanding legacy code.

In this paper, we present a reference architecture for
web browsers that has been derived from the source code
of two existing open source systems and validate our find-
ings against two additional systems. We explain how the
evolutionary history of the web browser domain has influ-
enced this reference architecture, and we identify underly-
ing phenomena that can help to explain current trends. Al-
though we present these observations in the context of web
browsers, we believe many of our findings represent more
general evolutionary patterns which apply to other domains.

2 The Web Browser Domain

The World Wide Web (WWW) is a shared information
system operating on top of the Internet. Web browsers re-
trieve content and display from remote web servers using a
stateless and anonymous protocol called HyperText Trans-
fer Protocol (HTTP). Web pages are written using a sim-
ple language called HyperText Markup Language (HTML).
They may be augmented with other technologies such as
Cascading Style Sheets (CSS), which adds additional lay-
out and style information, and JavaScript, which allows
client-side computation. Plugins are invoked for content
that the browser cannot handle natively, such as Java ap-
plets. Browsers typically provide other useful features such
as bookmarking, history, password management, and acces-
sibility features to accommodate users with disabilities.

Tim Berners-Lee wrote the first web browser in 1991;
it was text-only and also served as an HTML editor. Soon
after, another text-only browser called Lynx was adapted
for use with the WWW. In 1993, an easy-to-use, graph-



Lynx
1.0 2.0 2.4 2.85

1998−03−31

4.03.02.01.0 4.5 6.0 8.0

1.71.0

3.02.01.0

2.0 3.0 4.0 5.0 5.5 6.0

M18

Galeon

Netscape

1.0

0.5
Firefox

1.0

3.02.01.0

Safari
0.8 1.0 1.2

7.02.1 3.0 5.0 6.04.0

Hybrid

Closed−source

Open−source

Legend
19

92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

Internet Explorer

Mosaic

1.0

1.2

Mozilla

Konqueror

Opera

7.0

W
3C

 fo
un

de
d

Figure 1. Web browser timeline

ical browser called Mosaic was released, and a company
called Spyglass was created to commercialize its technolo-
gies. The program’s author, however, left to co-found his
own company, Netscape. In 1994, the World Wide Web
Consortium (W3C) was founded to promote interoperabil-
ity among web technologies. In 1995, Microsoft released
Internet Explorer (IE), based on code licensed from Spy-
glass, igniting a period of intense competition known as
the “browser wars.” Microsoft eventually dominated the
market, and Netscape open-sourced their browser under the
name Mozilla in 1998. The closed source browser Opera
also appeared in the mid-1990s. Figure 1 shows a timeline
of the various releases of several popular web browsers.

A large number of Mozilla variations have appeared,
reusing the browser core but offering alternative design
decisions for user-level features. Firefox is a standalone
browser that provides a more streamlined alternative to
Mozilla’s complex and integrated user interface. The open
source Konqueror browser has also been reused; Apple has
integrated its core subsystems into their OS X web browser,
Safari, and Apple’s modifications have in turn been reused
by other browsers. Internet Explorer’s closed source engine
has also seen reuse: Maxthon, Avant, and NetCaptor each
provide additional features such as tabbed browsing and ad-
blocking. Although each browser engine produces similar
results, there can be subtle differences as to how web pages
look and behave. Netscape 8, based on Firefox, takes ad-
vantage of this: the user may switch between IE-based ren-
dering and Mozilla-based rendering on the fly.

3 Deriving the Reference Architecture

Using the source code and available documentation for
two different web browsers, we derived a reference archi-
tecture for the web browser domain. We used a process
similar to that which is described by Hassan and Holt in
[8]. Two mature browser implementations were selected

Browser Engine

Rendering Engine

Networking
JavaScript
Interpreter

XML
Parser

D
ata P

ersistence

Display Backend

User Interface

Figure 2. Reference architecture for web
browsers

and, for each browser, a conceptual architecture was pro-
posed based on domain knowledge and available documen-
tation. The concrete architecture of each system was then
extracted from its source code, using the QLDX[1] reverse
engineering toolkit, and used to refine the conceptual archi-
tecture. A reference architecture was then proposed based
on the common structure of these refined architectures, and
it was validated against two other browser implementations.

The reference architecture we derived is shown in Fig-
ure 2; it comprises eight major subsystems plus the de-
pendencies between them: (1) theUser Interface; (2) the
Browser Engine, an embeddable component that provides
a high-level interface for querying and manipulating the
Rendering Engine; (3) the Rendering Engine, which per-
forms parsing and layout for HTML documents, option-
ally styled with CSS; (4) theNetworkingsubsystem; (5) the
JavaScript Interpreter; (6) theXML Parser; (7) theDisplay
Backend, which provides drawing and windowing primi-
tives, user interface widgets, and fonts; and (8) theData
Persistencesubsystem, which stores various data associated
with the browsing session on disk, including bookmarks,
cookies, and cache. Mozilla and Konqueror were used to
derive the reference architecture because they are mature
systems, have reasonably large developer communities and
user bases, provide good support for web standards, and are
entirely open source. Due to space constraints, we will not
show Konqueror’s architecture nor discuss it in detail.

The Mozilla Suite was open-sourced by Netscape in
1998, and since then most of the system has been com-
pletely redesigned or rewritten and a large number of new
features have been added. Mozilla’s key design goals are
strong support for web standards, support for multiple plat-
forms, and fast page rendering. The mapping of Mozilla’s
conceptual architecture onto the reference architecture is
shown in Figure 3. TheUser Interfaceis split over two
subsystems, allowing for parts of it to be reused in other ap-
plications in the Mozilla suite such as the mail/news client.
All data persistence is provided by Mozilla’s profile mecha-
nism, which stores both high-level data such as bookmarks
and low-level data such as a page cache. Mozilla’sRender-



Necko

Security
(NSS/PSM)

Spider−
Monkey

Expat GTK+
Adapter

JavaScript
Interpreter

XML
Parser

B
row

ser P
ersist.

Networking Display Backend

Rendering Engine

Browser Engine
Gecko

UI Toolkit (XPFE)

User Interface

U
ser, S

ecure,

User Interface

GTK+ / X11 Libraries

D
ata P

ersistence

Figure 3. Architecture of Mozilla

ing Engineis larger and more complex than that of other
browsers. One reason for this is Mozilla’s outstanding abil-
ity to parse and render malformed or broken HTML. An-
other reason is that theRendering Enginealso renders the
application’s cross-platform user interface. The UI is speci-
fied in platform-neutral Extensible User Interface Language
(XUL), which in turn is mapped onto platform-specific li-
braries using specially written adapter components. This
architecture distinguishes Mozilla from other browsers in
which the platform-specific display and widget libraries are
used directly, and it minimizes the effort required to support
multiple, diverse platforms.

4 Validating the Reference Architecture

Two additional implementations were chosen against
which to validate the reference architecture: Lynx and Sa-
fari. Lynx was chosen because it is the oldest web browser
still regularly used and maintained. Safari was chosen be-
cause it represents an interesting mix of open and closed
source technology—Apple has adapted Konqueror’s core
subsystems to use OS X libraries and added a proprietary
user interface. Due to space constraints, we will not show
Safari’s architecture nor discuss it in further detail.

Lynx is a one of the most popular text-only browsers in
use today. It predates the WWW, first serving as an interface
for an “organization-wide information system.” Custom hy-
pertext capabilities were then added, followed by support
for the Gopher protocol. Finally, support for WWW proto-
cols was grafted on, making Lynx into a true web browser.
This incremental development process has resulted in a sys-
tem composed of small fragments of code with no coherent
overall structure. Furthermore, much of the code is low-
level and platform-specific, increasing its complexity.

The mapping of Lynx’s conceptual architecture onto the
reference architecture is shown in Figure 4. Thelibwww
library provides a wide variety of functionality such as
HTML parsing and support for both the HTTP and FTP pro-

Rendering Engine

Browser Engine

Browser Core

User Interface

Security
(libgnutls)

JavaScript
Interpreter

XML
Parser

Curses

Display Backend

Networking

wwwlib

D
ata P

ersistence

Figure 4. Architecture of Lynx

tocols. Thelibgnutls library provides optional support
for secure protocols. Thecurses library is used to dis-
play and navigate information on character-cell terminals.
Lynx’s conceptual architecture shows a clear separation be-
tween its three main subsystems: browser core, network-
ing, and display backend; however, there is no clear sepa-
ration between theUser Interface, Browsing Engine, Ren-
dering Engine, andData Persistencesubsystems. This is
likely because they are less complex due to Lynx’s text-only
nature—the rendering engine outputs web pages in linear
form rather than attempting to layout elements at appropri-
ate coordinates, and the user interface relies solely on key-
board input rather than dealing with menus, widgets, and
mouse events. Lynx does not contain aJavaScript Inter-
preter or anXML Parserbecause these are relatively mod-
ern features which are not supported yet. The lack of mod-
ularity and the text-only nature of Lynx make its conceptual
architecture much simpler than our reference architecture;
nevertheless, it still has some common elements with the
reference architecture.

5 Summary and Related Work

There are several reasons why a web browser’s archi-
tecture would differ from our reference architecture. Some
of the subsystems in the reference architecture may be im-
plemented as a single subsystem for simplicity, while oth-
ers may be spread across multiple subsystems in the web
browser for greater flexibility. New subsystems may be
added to provide additional capabilities, while others may
be omitted to make the browser more lightweight.

Table 1 shows various statistics about the different web
browsers studied. Konqueror achieves nearly the same de-
gree of standards-compliance as Mozilla with one-quarter
of the amount of code. Lynx, while smaller than the other
browsers, is still five times larger than Links, a more recent
text-only browser with a comparable feature set. We are un-
able to obtain complete size information for Safari because
of its closed source components; the numbers shown corre-



Table 1. Approximate web browser statistics
Project Vers. Language Files kLOC MB* Start
Mozilla 1.7.3 C++, C 10,500 2,400 29 1998
Konq. 3.3.2 C++ 3,145 600 17 1996
Lynx 2.8.5 C 200 122 2.1 1989
Safari 1.2 C++,

Obj C
>750 >136 >2.1 2003

*Represents the compressed tarball size in megabytes.

spond only to the open source parts. We are currently inves-
tigating how the Mosaic, Dillo, and Galeon browsers corre-
spond to our reference architecture and hope to examine a
web browser designed specifically for embedded devices.

Reference architectures have been proposed for
other domains, including real-time train control
systems[4], avionics[2], and web servers[8]. Product
line architectures[3] are similar to reference architectures,
although they generally represent a group of systems
intended to be produced by a single organization, while
reference architectures represent the entire spectrum of sys-
tems in a domain. Various aspects of Mozilla’s architecture
and development process have been studied.[7][9][5].

6 Conclusions

We have examined the history and evolution of the web
browser domain, developed a reference architecture for web
browsers based on two existing implementations, and val-
idated this reference architecture by mapping it onto two
additional implementations. We have also observed sev-
eral interesting evolutionary phenomena; namely, emergent
domain boundaries, convergent evolution, and tension be-
tween open and closed source development approaches.

As the web browser domain has evolved, its concep-
tual boundaries—both external and internal—have become
increasingly more defined. However, there are still dis-
crepancies as to the nature of these boundaries. Micro-
soft has claimed that Internet Explorer is a fundamental
part of the Windows operating systems, providing render-
ing functionality to other applications. This has posed
a problem for third-party browsers such as Netscape that
sought to compete with IE. Similarly, email, usenet, and ftp
client functionalities have been integrated with the Netscape
and Mozilla browsers, discouraging competition from ex-
ternal clients. It will be interesting to observe how the web
browser domain adapts to support embedded devices such
as cell phones and PDAs, where limited memory makes it
undesirable to deploy multiple competing applications.

The large amount of effort devoted to creating high-
quality open source browser implementations has had an
interesting influence on the domain. During the “browser
wars,” proprietary extensions were added to core compo-
nents in order to attract customers. Today, increased pres-
sure to comply with standards has led to reuse of core

components; browsers instead differentiate themselves with
user-level features. However, these features seem to be eas-
ily duplicated; for example, tabbed browsing and pop-up
blocking were once innovative features but are now com-
monplace. These observations suggest that the web browser
domain is exhibiting a form ofconvergent evolution[6].

The availability of mature browser components has also
resulted in tension between open and closed source de-
velopment approaches. Mozilla’s open source engine has
been reused in numerous applications, both open and closed
source. Similarly, Konqueror’s open source engine has been
used as the basis for Safari. Although not required by the
licence, Apple has contributed its changes to open source
components back to the community. Conversely, Internet
Explorer represents a closed source engine that can poten-
tially be embedded in an otherwise open source product.
Netscape 8 strikes a balance by embedding both the Mozilla
and IE engines, allowing users to switch on the fly.

While we have seen applications composed of both open
and closed source components before, the interaction usu-
ally takes place on the perimeter, as is the case with closed
source binary modules for the Linux kernel. We believe the
heterogeneous combination of core open and closed source
software components within individual systems makes the
web browser domain unique and interesting.

Acknowledgements We thank Ali Echihabi for his con-
tributions to an earlier project out of which this paper has
grown, as well as Ric Holt for his feedback and advice.

References

[1] QLDX reverse engineering toolkit home page.http://
swag.uwaterloo.ca/qldx .

[2] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer. Cre-
ating reference architectures: An example from avionics. In
Proceedings of the 1995 Symposium on Software Reusability
(SSR ’95), pages 27–37, 1995.

[3] P. Clements and L. M. Northrop.Software product lines:
practices and patterns. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2001.

[4] W. Eixelsberger, M. Ogris, H. Gall, and B. Bellay. Software
architecture recovery of a program family. InProceedings of
the 20th International Conference on Software Engineering
(ICSE ’98), pages 508–511, 1998.

[5] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relat-
ing bug report data for feature tracking. InProceedings of
the 10th Working Conference on Reverse Engineering (WCRE
’03), pages 90–99, 2003.

[6] D. J. Futuyma. Evolutionary Biology. Sinauer Associates,
Sunderland, MA, USA, 3rd edition, 1998.

[7] M. Godfrey and E. H. S. Lee. Secrets from the monster:
Extracting Mozilla’s software architecture. InSecond Inter-
national Symposium on Constructing Software Engineering
Tools (CoSET ’00), June 2000.

[8] A. E. Hassan and R. C. Holt. A reference architecture for
web servers. InProceedings of 7th the Working Conference
on Reverse Engineering (WCRE ’00), pages 150–160, 2000.

[9] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case
studies of open source software development: Apache and
Mozilla. In ACM Trans. Software Engineering and Method-
ology, pages 11(3), 309–346, 2002.


